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The necessity of determining the condensation or evaporation rate of liquid drops arises 
in the study of numerous processes in meteorology, physical chemistry, and gas-dynamics. At 
the present time, the experimental study of these quantities is rather difficult, particular- 
ly for small drops, consisting of several thousands of molecules. The available theoretical 
methods [1-3] make it possible to calculate the growth rate of spherical drops under certain 
special restrictions imposed on the nature of the investigated process. Unfortunately, in 
none of the studies mentioned did the authors analyze the effect of their specific assumptions 
on the final result. 

The problem of determining the growth rate of spherical drops, found in a medium of nat- 
ural vapor, is solved in the present paper. Particular attention is paid to the problem of 
how the variation in drop internal energy with time and thermal conductivity of the drop af- 
fect its growth rate and temperature. 

i. Basic Equations. Consider a spherical drop surrounded by natural vapor. The tem- 
perature T o and vapor pressure P0 at infinite separation from the drop are constant. Initially, 
at t = 0, the drop has a radius R 0. We introduce the spherical coordinate system r, 9, % 
with origin at the center of the drop, and assume that the temperature profiles in the drop 
and in the vapor are spherically symmetric. Thus, the temperature inside the drop varies 
by some law T = T(r). 

We write the balance equations of mass and energy. Taking into account the low compres- 
sibility of the liquid, we assume that its density p depends on temperature only. Then 

d M / d t  = SHz~, dU/dt  + p d V / d t  = SIIQ, 

R R 

M = J' 4~,'2[, ( r)  dr ,  U = ,/" 4a r2e  (") P (r)  dr + S [(y - -  T~d~/dTs], 
0 0 

V = (4/3):~R 3, S = 4 a R  ~, 1I:,~ = m d N  + - -  IV-), IIQ = m~(O + - -  O- ) ,  

(i.i) 

where M, U, e, and V are the mass, internal and specific internal energy, and the volume of 
the drop; S and T s, area and temperature of its surface; o, surface tension coefficient; mi, 
mass Of the vapor molecules; and HM, HQ, N -+, and Q-+, total and specific mass and energy fluxes 
at the drop surface. The superscripts plus and minus refer to molecules flying toward and 
from the drop, respectively. In deriving (i.i) it was assumed that the liquid drop contains 
a sufficient number of molecules, so that the concepts of temperature, pressure, and density 
make sense, and one can separate between the bulk and surface portions. 

To find the temperature profile in the drop we find the self-similar quasistationary 
solution of the thermal conductivity equation 

[~T aT i) 1" 2 OT 
Ot r ~ Or " ~ r  = O. 

We assume that the liquid, the drop material, is at rest. We introduce the dimensionless 
R 

variable x = T/T,(t) (T,--(I/V) I 4ar~Tdr is the drop temperature averaged over the volume), 
0 

and assume that dT/dt = 0 [4]. The boundary conditions are stated at the center and at the 
surface of the drop. Since from a physical point of view the center of the drop is not a 
singular point, the regularity condition 8T/Sr[r= 0 = 0 must be satisfied at its location. 
The temperature gradient at the drop surface is related to the thermal flux NQ by the Fourier 
law ~ST/Sr = NQ. It can then be shown that the temperature profile for this regime is given 
by the relations 
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T(r) = HQR 2 sh lr/[(IR ch 1R - -  sh f lora l ,  ,tt ~" < O, 

T(r) = IIQR 2 sin lr/[(1R cos IR -- sin 1B),')~], ~2 ~ O. 
( 1 . 2 )  

Here ~2 = -3HQ/(RX,), and s is determined from the solution of the transcendental equation 

%T s -- IlQ(R, l ~ ) R s h l R / ( l R c h l l ~ - -  sh/R) ,  ~ t ~ < 0 .  ( 1 . 3 )  

Thus,  knowing Ts,  R, ~Q, and t h e  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t  X, one can c a l c u l a t e  t h e  
t e m p e r a t u r e  T ( r )  a t  any p o i n t  o f  t h e  d rop .  

Using (1.2), we find a system of differential equations for determining the time de- 
pendences of R and T s. We assume that p = Pz - P2 T (Pz and P2 are constant). Denoting by L 
the specific condensation heat, one can then obtain: 

e --= cpT -- L -- p2pT/p 2 ~ % T  -- L, (1.4) 

where it has been taken into account that far from the critical point p2pT/p 2 << L, and c D is 
the vapor heat capacity at constant pressure. Using the definitions of M, U, and T, in (i. 1) 
and (1.2), we have 

M = V (pt - -  p.,T) = 1/-p ( T , ) .  ( 1 . 5 )  

Similarly we obtain from (1.1)-(1.5) under the assumption L = const 

U = SE  - -  L M  + V {cvT,p ~ - -  (3/2) %p2I '~ (sh 2 lR /2 lR  - -  I)/R 2} = S Y  - -  L M  + VF.  ( 1 . 6 )  

Here F = HQRe(s ~R- shs RTs/shs F denotes the expression in the curved brackets, 
and E = o - Tsdo/dT s. Finally, we note that the pressure p in the drop can be found from the 
equilibrium condition p = Pv + 2o/R, where Pv is the vapor pressure above the drops. 

One can now express I~ = dR/dt and Ts = dTs/dt explicitly: 

i t  = (z~u~ - z ~ y ~ ) l ~ ,  ~ = x ~ y ,  - x , , y , ,  ( 1 . 7 )  

"7~ = ( x , z ,  - x , % ) / %  z~ = II,~, z.~ = IIQ + L I I ~ ,  

x~ = p (T,) + (B/3) 0p (T , ) /OT , .OT , /OR,  T ,  = 3TJ(1B) 2 ( lR cth lR - -  1), 

x~ = F. + (///3) OF~OR + p + 2/R (E - -  ~). g~ ='(R/3) 0p (T,)/OT,.OT,/OT~.~ 

Y2 = (R/3)OF/OT~ + OE/Or~. 

The derivative 8s and 8s are found by differentiating (1.3) with respect to R and 
Ts, and s is found by solving (1.3). 

We make the following comment. In [2, 3], along with the energy equation appearing 
in (i.i), the following relation is used: 

IIQ + LN~ = 0. ( 1 . 8 )  

We derive it from (i.i) by neglecting the work of the expanding drop (pdV/dt = 0), surface 
effects (o = 0), and assuming p = const. Since by (1.4) e -- cpT - L, then 

= ~ 4~r2epdr = p ( % T  - -  L) V = M (%T - -  L)~ U 

SIIQ = dU/dt  ---- d M / d t ( % T  - -  L) + McpdT/dt .  

At low temperatures cpT << L, whence 

SIIQ @ L S H ~  = McpdT/d t  or IIQ @ LII~  = pR/3.cpdT/dt .  

I t  i s  e a s i l y  seen  t h a t  ( 1 . 8 )  f o l l o w s  f rom ( 1 . 9 )  i f  IIQ + LH M >> p R / 3 " c p d T / d t .  
t i o n ,  however ,  i s  n o t  o b v i o u s .  

2. C a l c u l a t i o n  o f  t h e  Mass and Ene rgy  F l u x e s .  To s o l v e  ( 1 . 7 )  i t  i s  n e c e s s a r y  t o  know 
t h e  f l u x e s  N ~- and Q-* and t h e  v a p o r  p r e s s u r e  above  d rops  Pv" We assume t h a t  t h e  v a p o r  con-  
s i s t s  o f  a monatomic g a s .  The q u a n t i t i e s  m e n t i o n e d  can t h e n  be found by s o l v i n g  t h e  B o l t z -  
mann e q u a t i o n ,  which  in  s p h e r i c a l  c o o r d i n a t e s  i s  

oJ/Ot + v~.O//Or + (v~ -F v~)/r.OJ/Ovr-- (%vu/r ctg 0 + v,.vr O//Ov~ + 

(1.9) 

This assump- 
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Consider the process of drop growth in the quasistationary approximation R ~ 2kT01ml, 
assuming that (T s - T0)/T0 ~ i. In this case, 8f/St = 0, and the problem admits lineariza- 

tion. 

To solve the linearized stationary Boltzmann equation, we use the Lees moment method 
[5], in which the molecular distribution function over velocities is assumed to be discon- 
tinuous at each point of velocity space. A conic surface with a center at the given point 
and forming tangents to the drop surface partitions all velocity space into two subspaces. 
We assume that at each subspace f is a linearized locally Maxwellian function, while the 
superscripts minus and plus denote the regions inside and outside the conic surface intro- 
duced. Thus, 

l •  + ~) = ~ [ 1  + ~• + (C ~ -  312):• 1, ( 2 . 1 )  

where ~+ and ~- are the linear corrections to the distribution function, f0 = (p0/ml)(q/~)a/2 
exp(-~); P0 = P0/(AT0 ); C~ = q(v - u)2; q = mz/2kT0; ~• and ~• are corrections to temper- 

+ v• + ature and density: T- = T• - i; = Pv-/P0 - i. In the latter relations, T • and pv • are 
the temperature and vapor density in the corresponding subspaces. 

Multiplying successively the Boltzmann equation by ml, mlVr, mlv2/2, and mlV2Vr/2, and 
integrating over the whole velocity space, one obtains a system of four moment equations 
in the unknown corrections v • and ~• [2, 6]. In this case the integral over the whole ve- 
locity space is represented as a sum of integrals over the corresponding subspaces, and it 
is assumed that u = 0(~2). 

Two approaches were used in calculating the moments of the collision integral. In the 
first approach the function f in the integrand expression was expanded in a series in Sonin 
polynomials $3/2 p, multiplied by Cr, and the expansion coefficients were selected by the 
equality condition of the moments of this expansion to the moments of the original distribu- 
tion function [7]. In the present study we retained the first two terms of the series, and 
to determine the coefficients we selected the moments ur and qr (qr is the radial component 
of the thermal flux vector). In the second case we used the ellipsoidal model of [8]. It 
can be shown that the first three moments Aml, AmzVr, Amlv2/2 vanish due to conservation 
laws, while 

Amlv2v/2  = [2(v+ - -  v-)  - -  7(~ ~ - -  ~-) ]D/r ~. ( 2 . 2 )  

In this case we have for the collision operator of the ellipsoidal model D = -(4/15)kp0ToR2/ 
o 2 2 (2  2)  2 ~/~ (ml~Ic), while for the model of [7], = -(2/15)p0 R ~ �9 /(m I q /-~), where 1 c is the 

molecular mean free path, where ~(2.2) is the standard notation of [8], with the ~(2.2) value 
depending on the choice of the interaction potential of vapor molecules. 

As boundary conditions we use the fact that for r + ~ the vapor temperature and pressure 
equal T o and P0, and u = O. At the surface of the drop we provide the mass and energy accom- 
modation coefficients 

am = ( N+ - -  N - ) / (  N+ --" N ; ) ,  ~Q = (Q+ - Q- ) / (Q+ - Q; ) .  ( 2 . 3 )  

He re  N s -  and Qs- a r e  t h e  mass  and e n e r g y  f l u x e s  o f  t h e  m o l e c u l e s ,  w h i c h ,  f o l l o w i n g  r e f l e c t i o n  
f rom t h e  d rop  o r  e v a p o r a t i o n  f rom i t s  s u r f a c e  h a v e  a t e m p e r a t u r e  T s and d e n s i t y  Psv ,  e q u a l  t o  
t h e  e q u i l i b r i u m  d e n s i t y  o f  s a t u r a t e d  v a p o r  a b o v e  d r o p s  o f  a g i v e n  r a d i u s  R. S i n c e  an i d e a l  
g a s  i s  b e i n g  c o n s i d e r e d ,  Psv  = P e / (ATs  ) ,  where  A i s  t h e  gas  c o n s t a n t ,  Pe i s  t h e  e q u i l i b r i u m  
v a p o r  p r e s s u r e  a t  t h e  s u r f a c e  o f  t h e  d r o p ,  which  can  be found  f rom t h e  K e l v i n  e q u a t i o n  Pe = 
p~(T s )  exp [2o / (pATsR)  ] .  

It is known that a drop in equilibrium with a surrounding vapor is called a critical 
nucleus, whose radius is denoted by r,. Thus, 

= r ,  (Ts, Pe). ( 2 . 4 )  

Solving the system of moment equations with given boundary conditions, we obtain 

where  ~+ = ]/(2r), ~+ = --T+, ~- = ~+ q- C1, v- = v+ + C2, ( 2 . 5 )  
] = d(2C~ - -  7Ct); d = (4/5)m~D/(kpoTo); 
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Fig. 1 

v+(R) -- ~aC~ --  bC~; a : d/R,  b = --(7/2)d/B; 

Cl ~ [(l  - -  a ) ~ &  - -  a v ~  ] /( l  + b - -  a); 

C2 = [b~ + (t -I- b)v~ l/(l + b -- a); 

% = T / T o  - -  t; v~ ---- Ps~/Po -- t .  

it can be shown that the expression I + b - a vanishes only when R < 0, i.e., the system 
of moment equations always has a unique solution. 

It follows from kinetic theory [9] that 

N ~ = ~ ]• Q• = ~ ] ': (1/2) v~v,dv, ( 2 . 6 )  

S u b s t i t u t i n g  ( 2 . 5 )  i n t o  ( 2 . 6 ) ,  and assuming r = R ( s i n c e  we a re  i n t e r e s t e d  in  f l u x e s  a t  t h e  
s u r f a c e  o f  t h e  d r o p ) ,  we f i n a l l y  have 

N7 = N , ( i  + v~ + %/2), Q7 = Q , ( l  + v~ + (3/2) T~), Q, = 2 A T o N , ,  ( 2 . 7 )  

N ,  = po/(2~m,kTo) ~/~, N + = N ,  (1 + v + (R) + (i/2) ~+ (R)), 

Q+ = Q, (t  + v + iR) + (3/2) z+ (R)), n,,x = a ~ m ~ N ,  (v  + - -  v~ + (I/2) ~+ --  (1/2) v~), 

HQ = aqmlQ , (v  + --' % + (3/2) ~+ --  (3/2) ~),  p~ = pJ(AT~).  

For R § ~, we have from (2.5) ~+ + const and v + + const. In this case the velocity 
space degenerates from a discontinuous into a continuous one. Thus, the Lees method becomes 
unsuitable for solving similar problems for large-size drops. 

3. Stability and Limiting Cases. Consider the stability of system (1.7). This prob- 
lem is intimately related to clarifying the validity limits of the model developed. We estab- 
lish when Eqs. (i.i) can be solved in the form (1.7). For this it is necessary and suffi- 
cient that the Jacob• ~= xly 2 - x2y I is nonvanishing. We put c = c I - o2Ts, where ~i, 
c 2 = const. Consider special cases: in the first (SCI), P2 = 0, T(r) -- const, and ~ = 
Cppl 2 > 0, and, in the second (SC2), for T(r) - const,@ = Cp02R/3 + (p + 2o2T/R)R0=/3 > 0. 
In the general case, due to the complicated dependence of ~ on R and Ts, this fact is not ob- 
vious. However, a numerical study for water and argon has shown that ~ > 0 in the whole 
temperature and pressure region, in which separate existence of liquid and gas phases is 
possible. The values of the constants appearing in the thermophysical dependences for water 
and argon are given in Table i, where ~ is the molecular weight, d and Px are the constants 

TABLE 1 

Medium it, 
kg/mole 

Water i8,02 
Argon 39,95 

i l l 0  
2620 

0,4 I t28,0 
t3,8 29,5 

0,i9 
0,t96 

5338 
685,4 

28,26 
7,85 1010 

A'-- 

0,68t 
0,t26 

~(.2,2) 

2,50 
1,75 

2,52 
3,40 
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of the Clausius-Clapevron equation for determining the saturated vapor pressure p~(T) = PI" 
exp(d - L/(AT)), ~,(2~2) = ~(2.2)/(2o02 A~0.~), and a 0 is a parameter of the interaction 
potential of solid spheres. In this case ~(2.2) was selected for the Lennard-Jones (6-12) 
potential (argon) and for the Keesom potential (water), and was assumed to be independent 
of To. 

We find the stationary points of system (1.7), for which it is required to solve the 
system of equations R = 0 and Ts = 0. 

3.1. Critical Size Nucleus. It is seen that the condition R = 0, Ts = 0 is satisfied 
for z i = z2 = 0, corresponding to HM = HQ = 0 and Ts = Vs = 0. Hence we have T s = To, and 
from (2.4) p = P0, R = r,(T0, P0). The point To, r, corresponds to the case in which the 
drop is a critical nucleus in equilibrium with the surrounding vapor. 

In studying the stability of the point To, r, it seems that for the models considered of 
the collision operator is is always unstable. It corresponds by its physical meaning to 
the critical radius known from thermodynamics. 

3.2. Integral Curves (1.7). We establish the behavior of the integral curves (1.7), 
for which purpose for given T o and s o = p0/p~(T 0) we construct the curves T I = TI(R) and 
T2 = Tm(R), along which R and Ts vanish. They are shown schematically in Fig. i (curves i 
and 2), but the exact calculations verify this behavior. It follows from Sec. 3.1 that both 
curves intersect at the point T = To, R = r,(T0, So). Thus, all possible states in which 
the drop has a radius R and surface temperature Ts can be divided into four regions. In re- 
gion A, Ts < 0~ R < 0; B, @s < 0, R > 0; C, @s > 0, R > 0; D, Ts > 0, R < 0. The study per- 
formed has shown that the point To, r, is a singular point of the "saddle" type. The sepa- 
ratrix 3 partitions the regions mentioned and practically coincides with curve 2 (@s = 0), 
and the separatrix 4 is a line of critical radii. All drops whose initial size in Fig. i 
is left of this line evaporate, and all those on the right grow. Thus, the concept of criti- 
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cal size can be generalized to the case in which the temperatures of the drop and the vapor 
differ from each other. 

The analysis of the behavior of integral curves makes it possible to make several com- 
ments: 

Under nonvarying external conditions in the vapor (To, P0 are constant) there exist 
drops with R < r,, which increase to infinity in their evolution process. 

There exist drops with R > r, which evaporate in the evolution process. 

Thus, account of nonisothermicity can lead to a change in the nature of the flow process 
of drop growth or evaporation. 

4. Test Calculations and Model Comparison. In test calculations the system (1.7) was 
integrated numerically for given To, P0 as well as R 0 and Ts0 at moment t = 0. It was assumed 
that a m = ~Q = 1 for argon, and the remaining required constants were selected from Table i. 

Figure 2a, b shows the dependences obtained from the solution of systems SCI, SC2, and 
(1.7) of Ts, T,, TN, and R (lines 1-4) on t (T N is the temperature of the center of the drop, 
the subscript e is the ellipsoidal model of the collision operator, b is the model of [7], 
0 is SCI, and 1 is SC2). The initial conditions for this calculation are: T o = 90~ s o = 
3, P0 = 3"105 Pa, r,(T0, P0) = 8.42"10-7 mm, R0 = 1000r, = 8.42.10 -7 mm, Ts0 = To = 90~ 
As follows from the calculations, the nonuniformity of the temperature profile in this drop 
can consist of 14~ In this case, account of thermal conductivity leads to a noticeable 
change in R, while the results can differ by orders of magnitude. At time of order 10 -7 
sec the temperature profiles are balanced in this drop. 

Figure 3 shows results of calculations with the same initial data, carried out by the 
model of [2] (curve 1 is Ts, 2 is R). The results differ greatly from those shown in Fig. 
2, which is related to the use of the energy equation (1.8). 

It is seen from Fig. 2 that the replacement of the ellipsoidal model of the collision 
operator by the model of [7] leads to variations in Ts by 2-3% and a change in R by up to 
40%. 

Similar calculations, carried out with the same initial data but with R 0 = 9r,, showed 
that for such small drops inclusion of thermal conductivity is unimportant. 

It is of interest to explain the effect on R and Ts of the choice of the thermophysical 
dependences. It is seen from Fig. 2 that account of the temperature dependence of the liquid 
density leads to a variation of Ts within 2-5% and of R by a factor of 30. Thus, for exact 
calculations of R it is necessary to take into account the real thermophysical drop properties. 

The author is grateful to V. A. Volkov for useful comments. 
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